Jul 31, 2020 · In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government). Advantages and disadvantages. Quasi-experimental designs have various pros and cons compared to other types of studies. ... Although an independent variable is manipulated, either a control group is missing or participants are not randomly assigned to conditions (Cook & Campbell, 1979) [1]. Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem associated with non ... ... Nov 25, 2024 · Accordingly, the definition of quasi-experimental research 1,2 is that it is a type of research that resembles true experimental research but is not the exact same concept. A true experimental design has three characteristics—manipulation of the independent variable, presence of a control group, and random assignment of participants to ... ... Nov 26, 2024 · Like any research design, quasi-experimental designs have certain advantages and disadvantages. Advantages of quasi-experimental design: Higher external validity than true experiments : Quasi-experiments are generally conducted in real-world settings rather than controlled laboratory settings, so they may better reflect reality. ... In a quasi-experiment, the independent variable is manipulated and similar to an experiment, it tests causal hypothesis (Campbell & Stanley, 1963). Quasi-experiments allow researchers to infer causality by using the logic behind the experiment in a different way; however, there are three criteria that must be satisfied for causality to be inferred: ... Quasi-Experimental Designs “Static” variables: Experimenter does not manipulate Therefore all could be subject to unknown or unanticipated confounds Cannot clearly isolate cause and effect Defined in terms of correlations of associations In an article, preferred description is the strength of the association ... Mar 26, 2024 · Quasi-experimental research design is a widely used methodology in social sciences, education, healthcare, and other fields to evaluate the impact of an intervention or treatment. Unlike true experimental designs, quasi-experiments lack random assignment, which can limit control over external factors but still offer valuable insights into cause ... ... The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook et al., 1979). ... Dec 19, 2023 · Quasi-experimental design is a research methodology used to study the effects of independent variables on dependent variables when full experimental control is not possible or ethical. It falls between controlled experiments, where variables are tightly controlled, and purely observational studies, where researchers have little control over ... ... ">

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.3 Quasi-Experimental Research

Learning objectives.

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.

Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

Pretest-Posttest Design

In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001). Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Does Psychotherapy Work?

Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952). But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here:

http://psychclassics.yorku.ca/Eysenck/psychotherapy.htm

Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980). They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.

Han Eysenck

In a classic 1952 article, researcher Hans Eysenck pointed out the shortcomings of the simple pretest-posttest design for evaluating the effectiveness of psychotherapy.

Wikimedia Commons – CC BY-SA 3.0.

Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979). Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.

Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Figure 7.5 A Hypothetical Interrupted Time-Series Design

A Hypothetical Interrupted Time-Series Design - The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not

The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

Key Takeaways

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

Discussion: Imagine that a group of obese children is recruited for a study in which their weight is measured, then they participate for 3 months in a program that encourages them to be more active, and finally their weight is measured again. Explain how each of the following might affect the results:

  • regression to the mean
  • spontaneous remission

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin.

Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324.

Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146.

Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Quasi-Experimental Research

The prefix  quasi  means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Recall with a true between-groups experiment, random assignment to conditions is used to ensure the groups are equivalent and with a true within-subjects design counterbalancing is used to guard against order effects. Quasi-experiments are missing one of these safeguards. Although an independent variable is manipulated, either a control group is missing or participants are not randomly assigned to conditions (Cook & Campbell, 1979) [1] .

Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem associated with non-experimental research. But because either counterbalancing techniques are not used or participants are not randomly assigned to conditions—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between non-experimental studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones in this chapter. 

  • Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. ↵

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Educational resources and simple solutions for your research journey

quasi experimental research how variable is handled or manipulated

What is Quasi-Experimental Design? Definition, Types, and Examples

quasi experimental research how variable is handled or manipulated

An experimental design is the process of planning and organizing scientific experiments to obtain useful results from collected data. Experimental design is an important aspect of the scientific method because it ensures the validity and reliability of the information extracted from available data. In several experimental designs, objects or participants are randomly assigned to an experimental group to avoid any type of bias; these are called true experiments.  

A quasi-experimental design is a study design in which participants cannot be randomly assigned to an experimental or control group for practical or ethical reasons. However, like a true experiment, it is used to evaluate the effects of an intervention, or in other words, to establish a cause-and effect relationship between independent and dependent variables. The intervention could be a training program, a policy change, a medical treatment, etc. In such quasi-experimental designs , the assignment of participants is usually based on self-selection or selection by an administrator or researcher.   

This article will provide the quasi-experimental design definition and will describe in detail the types and uses of such experimental designs and their similarities and differences with true experiments.  

Table of Contents

What is Quasi-Experimental Research ?  

The prefix “quasi” means “resembling to a certain degree.” Accordingly, the definition of quasi-experimental research 1,2 is that it is a type of research that resembles true experimental research but is not the exact same concept. A true experimental design has three characteristics—manipulation of the independent variable, presence of a control group, and random assignment of participants to experimental groups.  

In quasi-experimental research , although the independent variable is manipulated, either the participants are not randomly assigned to groups or there is no control group. This is the main difference between quasi and true experiments.  

In quasi-experimental research , the directionality problem (that is, the relationship between two variables is known but the cause and effect is not known) doesn’t exist because of the ability to manipulate independent variables. However, this type of research doesn’t eliminate the problem of confounding variables (an extraneous variable that is not controlled in a study and could affect other variables, resulting in distorted associations between the variables) because quasi-experimental research doesn’t involve random assignment. Consequently, quasi-experimental research is lower in internal validity (the extent to which a study can establish a cause-and-effect relationship between variables) than true experiments.  

Quasi-experimental research is most common in field studies where random assignment is either difficult or impossible. This type of research is often conducted to analyze the effectiveness of a specific treatment. Some of the important types of quasi-experimental research designs are—non-equivalent group design, pretest–posttest design, interrupted time series design, combination design, and regression discontinuity design. After understanding the quasi experimental design meaning , let’s look at when to use this.  

quasi experimental research how variable is handled or manipulated

When to Use Quasi-Experimental Research ?   

In some situations, using randomization to assign participants to groups may be unethical (for example, providing a specific health treatment to one group and withholding it from the other group). In such cases, quasi-experimental research can be used to identify a causal relationship without any ethical or practical challenges.   

The following list describes some instances, with examples, where quasi-experimental research designs would be more appropriate. 3,4  

  • When being in one group could be harmful to the participants either because the intervention is harmful (e.g., randomizing people to smoking), or the intervention has questionable efficacy, or it is so beneficial that it wouldn’t be appropriate to withhold the intervention from the control group (e.g., randomizing people to receive a minor surgery).  
  • When interventions act on a group of people in a specific location , it becomes difficult to adequately randomize participants (e.g., an intervention that reduces pollution in a specific area).  
  • When working with small sample sizes, because randomized controlled trials require a large sample size to ensure even distribution of confounding variables between the treatment and control groups.  

Differences Between Quasi Experiments and True Experiments   

Unsure about choosing between experimental and quasi-experimental design for your research? Take a look at the main differences between quasi and true experiments as depicted in the following table. 4,5  

quasi experimental research how variable is handled or manipulated

Types of Quasi-Experimental Designs    

Here are some common types of quasi-experimental designs .[ 1,5]  

Non-equivalent Groups Design  

In a between-subjects experimental design, participants are randomly divided into two or more groups and each group is assigned a treatment condition, the outcomes of which are then compared. In such designs, the resulting groups are quite similar and are considered equivalent. However, when participants are not randomly assigned, the groups will be dissimilar and are therefore considered non-equivalent. The groups may have preexisting differences that could affect the outcome of the study because it becomes difficult to attribute any observed changes solely to the intervention being studied. This type of research design is one of the most common quasi-experimental designs .   

Pretest–Posttest Design  

In this type of research design, the dependent variable is measured once before the treatment begins and once after the treatment. For example, a researcher interested in studying the effectiveness of a public-speaking short seminar on elementary school students’ speaking skills could analyze the skills of the children before the course and then after the course to identify any changes. This type of quasi-experimental design is similar to a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. If the average posttest score is better than the average pretest score, it implies that the treatment may be responsible for the improvement. This research design may or may not include control groups and may be prone to internal validity risk (this is the main difference of this design with the non-equivalent groups design). One advantage of this quasi-experimental design is that it provides directionality because the dependent variable is tested both before and after the intervention.  

Combination Design  

This type of quasi-experimental design combines both pretest–posttest and non-equivalent groups designs. In this research design, a treatment group is given a pretest, receives a treatment, and then is given a posttest. The control group is also given a pretest, but does not receive the treatment, and then is given a posttest.  

Interrupted Time Series Design  

A time series is a set of measurements taken at multiple and equally spaced intervals over a period of time before and after an intervention. The main objective of this type of quasi-experimental design is to assess whether the observations before and after the intervention are different. For example, a company wants to measure its employees’ productivity per week for a year. In this type of research design, a time series is “interrupted” by a treatment. In this same example, the company reduced work hours from 10 hours to 8 hours. This measure was found to increase the productivity quickly and it remained elevated for several months. This would help researchers conclude that reduced work hours increased productivity.  

Regression Discontinuity Design  

This quasi-experimental design assesses the influence of a treatment or intervention by using a mechanism that assigns the treatment based on eligibility, or a “cut-off point” of some known variable, such as age and income. This specific threshold value or cut-off score is used to assign participants to treatment groups and helps researchers compare the effectiveness of an intervention on participants immediately above and below the cut-off point.  

quasi experimental research how variable is handled or manipulated

Advantages and Disadvantages of Quasi-Experimental Designs  

Here are a few important advantages and disadvantages of quasi-experimental designs . 3,6  

Advantages of Quasi-Experimental Designs  

  • Higher external validity : Quasi-experimental designs are more practical with more real-world applications and therefore may be more generalizable.  
  • Higher control over targeted hypotheses : Because there is no randomization of participants, the dependent variables can be more controlled, targeted, and efficient.  
  • Can be combined with other methodologies : Quasi-experimental design can be combined with statistical analyses and results of other true experiments, which can significantly reduce research time.  
  • Less expensive and time consuming than randomized controlled trials and require fewer resources.  

Disadvantages of Quasi-Experimental Designs    

  • Randomization is not used , so the study is not useful for concluding a causal relationship between an intervention and an outcome.  
  • Lower internal validity : Because the variables can be controlled, it’s difficult to know if researchers have used all confounding variables.  
  • Risk of inaccurate data : Quasi-experimental design often borrows data from other research so the data may not necessarily be complete or accurate.  
  • Risk of bias : Researchers choose baseline elements and eligibility so there’s a risk of researcher bias. The types of selection bias that can occur in quasi-experimental design include maturation bias, historical bias, instrumentation bias, and Hawthorne effect.  

Key Takeaways  

  • Both experimental and quasi-experimental design s are used to evaluate the effectiveness of a treatment.  
  • Quasi experiments differ from true experiments in several aspects:  
  • Participants cannot be randomly selected or assigned to treatment groups for practical or ethical reasons.  
  • A control group may or may not be necessary  
  • Quasi experiments have high external validity, are useful for smaller sample sizes, are less expensive, and they require fewer resources.  
  • Quasi-experimental designs have low internal validity, and the absence of randomization leads to a risk of bias and confounding.  
  • Some of the important types of quasi-experimental designs are—non-equivalent group design, pretest–posttest design, interrupted time series design, combination design, and regression discontinuity design.  

quasi experimental research how variable is handled or manipulated

Frequently Asked Questions   

Q1. What is the main purpose of quasi-experimental research ?  

A1. The main purpose of quasi-experimental research is to establish a cause-and-effect relationship between variables and assess the impact of an intervention on the outcome, in the absence of randomization.  

Q2. What are some applications of quasi-experimental design in research?  

A2. Quasi-experimental designs can be used in different disciplines, some of which are mentioned below. 7  

  • Education : Quasi-experimental design can be used in education to assess the effectiveness of diverse interventions, such as new teaching measures and tools, curriculum changes, teacher training, policy changes, etc.  
  • Healthcare: To analyze the effectiveness of new medicines, dosages, medical equipment, etc.  
  • Psychology: To study the influence of factors such as trauma, geographic changes, social media, etc., on behavior.  
  • Public policy: To examine the influence of policy changes and government reforms on the public, such as the effect of new tax reforms on spending power.  
  • Business and marketing: To analyze the effects of new products, advertisements through different media, product design, etc., on consumer behavior and the purchasing trends of consumers.  

Q3. What are a few real-world quasi-experimental research examples ?  

A3. Here are a few quasi-experimental research examples in the real-world setting. 7  

Education  

To study the effectiveness of a new or updated educational program or curriculum, you could use the non-equivalent groups design method to select two schools with comparable features within the same district, introduce the new program in one, and retain the existing programs in the other. Comparison between the schools after a specific period can help ascertain whether the new program was effective or not. Random assignment of the schools or student groups would not have been appropriate because it could have been rendered advantageous or disadvantageous to either group.  

Healthcare  

Quasi-experimental research can be helpful in analyzing the effectiveness of public health interventions such as vaccination campaigns. A time-series quasi-experimental design would be useful in understanding the effect of vaccination over a prolonged period by studying disease incidence rates before and after vaccination.  

Workplace  

A company can evaluate the effectiveness of a technical skills training program for its employees using the pretest-posttest quasi-experimental design . The technical skills of the employees can be tested both before and after they participate in the training. This research design focuses on immediate impact unlike the time series design, which focuses on the impact over a long period.  

A quasi-experimental design is thus very similar to true experiments, with the same objective of assessing the effectiveness of interventions in various fields. However, it has certain characteristically important differences, which render such designs useful in situations where conducting a true experiment may not be ethical or practical. We hope this article would have expanded your knowledge of experimental and quasi-experimental designs and will help you in selecting the appropriate design for your research.  

References  

  • Price PC, Jhangiani R, Chiang I-C A. Quasi-experimental research. Research Methods in Psychology – 2 nd Canadian edition. BCCampus website. Accessed November 12, 2024. https://opentextbc.ca/researchmethods/chapter/quasi-experimental-research/  
  • Price PC et al. Chapter 8: Quasi-experimental research. Research Methods in Psychology. Accessed November 13, 2024. https://opentext.wsu.edu/carriecuttler/part/chapter-8-quasi-experimental-research/  
  • Quasi-experimental design: Types, examples, pros, and cons. MasterClass website. Published June 16, 2022. Accessed November 14, 2024. https://www.masterclass.com/articles/quasi-experimental  
  • Choueiry G. Experimental vs. quasi-experimental design: Which to choose? Quantifying Health. Accessed November 14, 2024. https://quantifyinghealth.com/experimental-vs-quasi-experimental-design/  
  • Explaining quasi-experimental design and its various methods. Voxco. Published September 17, 2021. Accessed November 15, 2024. https://www.voxco.com/blog/quasi-experimental-design-explanation-methods-and-faqs/  
  • Schweizer ML, Braun BI, Milstone AM. Research methods in healthcare epidemiology and antimicrobial stewardship-quasi experimental designs. Infect Control Hosp Epidemiol . 2016;37(10):1135-40. doi:10.1017/ice.2016.117. Accessed November 16, 2024. https://pmc.ncbi.nlm.nih.gov/articles/PMC5036994/  
  • Quasi-experimental design: Rigor meets real-world conditions. Servicescape. Published October 4, 2023. Accessed November 18, 2024. https://www.servicescape.com/blog/quasi-experimental-design-rigor-meets-real-world-conditions  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

experimental-research-design

What is Experimental Research Design? Definition, Examples, and Types of Designs

sci-indexed journal

What is an SCI-indexed Journal?

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 6: Data Collection Strategies

6.3 Quasi-Experiments

Under certain conditions, researchers often turn to field experiments, also known as quasi-experiment. These conditions usually occur when it is not possible to randomly assign participants to treatment and control groups (White & Sabarwal, 2014). Rather, selection to a group is by the participants, the researcher, or both the participant and the researcher (White & Sabarwal, 2014).

In a quasi-experiment, the independent variable is manipulated and similar to an experiment, it tests causal hypothesis (Campbell & Stanley, 1963).

Quasi-experiments allow researchers to infer causality by using the logic behind the experiment in a different way; however, there are three criteria that must be satisfied for causality to be inferred:

  • The independent variable (X) comes before the dependent variable (Y) in time.
  • X and Y are related to each other (i.e., they occur together).
  • The relationship between X and Y aren’t explained by other causal agents (Crump, Price, Jhangiani, Chiang, & Leighton, 2017).

In a quasi-experiment the researcher identifies a comparison group that is as similar as is possible to the treatment group, as it relates to baseline (pre-intervention) characteristics. There are techniques for reducing selection bias when creating a comparison group. These techniques are regression discontinuity design and propensity score matching (White & Sabarwal, 2014).

Research Methods for the Social Sciences: An Introduction Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

A Modern Guide to Understanding and Conducting Research in Psychology

Chapter 7 quasi-experimental research, learning objectives.

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions ( Cook et al., 1979 ) . Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here, focusing first on nonequivalent groups, pretest-posttest, interrupted time series, and combination designs before turning to single subject designs (including reversal and multiple-baseline designs).

7.1 Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

7.2 Pretest-Posttest Design

In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an STEM education program on elementary school students’ attitudes toward science, technology, engineering and math. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the STEM program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an science program aired on television and many of the students watched it, or perhaps a major scientific discover occured and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become more exposed to STEM subjects in class or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all ( Posternak & Miller, 2001 ) . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Finally, it is possible that the act of taking a pretest can sensitize participants to the measurement process or heighten their awareness of the variable under investigation. This heightened sensitivity, called a testing effect , can subsequently lead to changes in their posttest responses, even in the absence of any external intervention effect.

7.3 Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In a recent COVID-19 study, the intervention involved the implementation of state-issued mask mandates and restrictions on on-premises restaurant dining. The researchers examined the impact of these measures on COVID-19 cases and deaths ( Guy Jr et al., 2021 ) . Since there was a rapid reduction in daily case and death growth rates following the implementation of mask mandates, and this effect persisted for an extended period, the researchers concluded that the implementation of mask mandates was the cause of the decrease in COVID-19 transmission. This study employed an interrupted time series design, similar to a pretest-posttest design, as it involved measuring the outcomes before and after the intervention. However, unlike the pretest-posttest design, it incorporated multiple measurements before and after the intervention, providing a more comprehensive analysis of the policy impacts.

Figure 7.1 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.1 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.1 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Two line graphs. The x-axes on both are labeled Week and range from 0 to 14. The y-axes on both are labeled Absences and range from 0 to 8. Between weeks 7 and 8 a vertical dotted line indicates when a treatment was introduced. Both graphs show generally high levels of absences from weeks 1 through 7 (before the treatment) and only 2 absences in week 8 (the first observation after the treatment). The top graph shows the absence level staying low from weeks 9 to 14. The bottom graph shows the absence level for weeks 9 to 15 bouncing around at the same high levels as before the treatment.

Figure 7.1: Hypothetical interrupted time-series design. The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

7.4 Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their current level of engagement in pro-environmental behaviors (i.e., recycling, eating less red meat, abstaining for single-use plastics, etc.), then are exposed to an pro-environmental program in which they learn about the effects of human caused climate change on the planet, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an pro-environmental program, and finally are given a posttest. Again, if students in the treatment condition become more involved in pro-environmental behaviors, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become engage in more pro-environmental behaviors than students in the control condition. But if it is a matter of history (e.g., news of a forest fire or drought) or maturation (e.g., improved reasoning or sense of responsibility), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a local heat wave with record high temperatures), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, this kind of design has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

KEY TAKEAWAYS

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

regression to the mean

Spontaneous remission, 7.5 single-subject research.

  • Explain what single-subject research is, including how it differs from other types of psychological research and who uses single-subject research and why.
  • Design simple single-subject studies using reversal and multiple-baseline designs.
  • Explain how single-subject research designs address the issue of internal validity.
  • Interpret the results of simple single-subject studies based on the visual inspection of graphed data.
  • Explain some of the points of disagreement between advocates of single-subject research and advocates of group research.

Researcher Vance Hall and his colleagues were faced with the challenge of increasing the extent to which six disruptive elementary school students stayed focused on their schoolwork ( Hall et al., 1968 ) . For each of several days, the researchers carefully recorded whether or not each student was doing schoolwork every 10 seconds during a 30-minute period. Once they had established this baseline, they introduced a treatment. The treatment was that when the student was doing schoolwork, the teacher gave him or her positive attention in the form of a comment like “good work” or a pat on the shoulder. The result was that all of the students dramatically increased their time spent on schoolwork and decreased their disruptive behavior during this treatment phase. For example, a student named Robbie originally spent 25% of his time on schoolwork and the other 75% “snapping rubber bands, playing with toys from his pocket, and talking and laughing with peers” (p. 3). During the treatment phase, however, he spent 71% of his time on schoolwork and only 29% on other activities. Finally, when the researchers had the teacher stop giving positive attention, the students all decreased their studying and increased their disruptive behavior. This was consistent with the claim that it was, in fact, the positive attention that was responsible for the increase in studying. This was one of the first studies to show that attending to positive behavior—and ignoring negative behavior—could be a quick and effective way to deal with problem behavior in an applied setting.

Single-subject research has shown that positive attention from a teacher for studying can increase studying and decrease disruptive behavior. *Photo by Jerry Wang on Unsplash.*

Figure 7.2: Single-subject research has shown that positive attention from a teacher for studying can increase studying and decrease disruptive behavior. Photo by Jerry Wang on Unsplash.

Most of this book is about what can be called group research, which typically involves studying a large number of participants and combining their data to draw general conclusions about human behavior. The study by Hall and his colleagues, in contrast, is an example of single-subject research, which typically involves studying a small number of participants and focusing closely on each individual. In this section, we consider this alternative approach. We begin with an overview of single-subject research, including some assumptions on which it is based, who conducts it, and why they do. We then look at some basic single-subject research designs and how the data from those designs are analyzed. Finally, we consider some of the strengths and weaknesses of single-subject research as compared with group research and see how these two approaches can complement each other.

Overview of Single-Subject Research

What is single-subject research.

Single-subject research is a type of quantitative, quasi-experimental research that involves studying in detail the behavior of each of a small number of participants. Note that the term single-subject does not mean that only one participant is studied; it is more typical for there to be somewhere between two and 10 participants. (This is why single-subject research designs are sometimes called small-n designs, where n is the statistical symbol for the sample size.) Single-subject research can be contrasted with group research , which typically involves studying large numbers of participants and examining their behavior primarily in terms of group means, standard deviations, and so on. The majority of this book is devoted to understanding group research, which is the most common approach in psychology. But single-subject research is an important alternative, and it is the primary approach in some areas of psychology.

Before continuing, it is important to distinguish single-subject research from two other approaches, both of which involve studying in detail a small number of participants. One is qualitative research, which focuses on understanding people’s subjective experience by collecting relatively unstructured data (e.g., detailed interviews) and analyzing those data using narrative rather than quantitative techniques (see. Single-subject research, in contrast, focuses on understanding objective behavior through experimental manipulation and control, collecting highly structured data, and analyzing those data quantitatively.

It is also important to distinguish single-subject research from case studies. A case study is a detailed description of an individual, which can include both qualitative and quantitative analyses. (Case studies that include only qualitative analyses can be considered a type of qualitative research.) The history of psychology is filled with influential cases studies, such as Sigmund Freud’s description of “Anna O.” (see box “The Case of ‘Anna O.’”) and John Watson and Rosalie Rayner’s description of Little Albert ( Watson & Rayner, 1920 ) who learned to fear a white rat—along with other furry objects—when the researchers made a loud noise while he was playing with the rat. Case studies can be useful for suggesting new research questions and for illustrating general principles. They can also help researchers understand rare phenomena, such as the effects of damage to a specific part of the human brain. As a general rule, however, case studies cannot substitute for carefully designed group or single-subject research studies. One reason is that case studies usually do not allow researchers to determine whether specific events are causally related, or even related at all. For example, if a patient is described in a case study as having been sexually abused as a child and then as having developed an eating disorder as a teenager, there is no way to determine whether these two events had anything to do with each other. A second reason is that an individual case can always be unusual in some way and therefore be unrepresentative of people more generally. Thus case studies have serious problems with both internal and external validity.

The Case of “Anna O.”

Sigmund Freud used the case of a young woman he called “Anna O.” to illustrate many principles of his theory of psychoanalysis ( Freud, 1957 ) . (Her real name was Bertha Pappenheim, and she was an early feminist who went on to make important contributions to the field of social work.) Anna had come to Freud’s colleague Josef Breuer around 1880 with a variety of odd physical and psychological symptoms. One of them was that for several weeks she was unable to drink any fluids. According to Freud,

She would take up the glass of water that she longed for, but as soon as it touched her lips she would push it away like someone suffering from hydrophobia.…She lived only on fruit, such as melons, etc., so as to lessen her tormenting thirst (p. 9).

But according to Freud, a breakthrough came one day while Anna was under hypnosis.

[S]he grumbled about her English “lady-companion,” whom she did not care for, and went on to describe, with every sign of disgust, how she had once gone into this lady’s room and how her little dog—horrid creature!—had drunk out of a glass there. The patient had said nothing, as she had wanted to be polite. After giving further energetic expression to the anger she had held back, she asked for something to drink, drank a large quantity of water without any difficulty, and awoke from her hypnosis with the glass at her lips; and thereupon the disturbance vanished, never to return.

Freud’s interpretation was that Anna had repressed the memory of this incident along with the emotion that it triggered and that this was what had caused her inability to drink. Furthermore, her recollection of the incident, along with her expression of the emotion she had repressed, caused the symptom to go away.

As an illustration of Freud’s theory, the case study of Anna O. is quite effective. As evidence for the theory, however, it is essentially worthless. The description provides no way of knowing whether Anna had really repressed the memory of the dog drinking from the glass, whether this repression had caused her inability to drink, or whether recalling this “trauma” relieved the symptom. It is also unclear from this case study how typical or atypical Anna’s experience was.

"Anna O." was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis. Source: Wikimedia Commons

Figure 7.3: “Anna O.” was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis. Source: Wikimedia Commons

Assumptions of Single-Subject Research

Again, single-subject research involves studying a small number of participants and focusing intensively on the behavior of each one. But why take this approach instead of the group approach? There are two important assumptions underlying single-subject research, and it will help to consider them now.

First and foremost is the assumption that it is important to focus intensively on the behavior of individual participants. One reason for this is that group research can hide individual differences and generate results that do not represent the behavior of any individual. For example, a treatment that has a positive effect for half the people exposed to it but a negative effect for the other half would, on average, appear to have no effect at all. Single-subject research, however, would likely reveal these individual differences. A second reason to focus intensively on individuals is that sometimes it is the behavior of a particular individual that is primarily of interest. A school psychologist, for example, might be interested in changing the behavior of a particular disruptive student. Although previous published research (both single-subject and group research) is likely to provide some guidance on how to do this, conducting a study on this student would be more direct and probably more effective.

Another assumption of single-subject research is that it is important to study strong and consistent effects that have biological or social importance. Applied researchers, in particular, are interested in treatments that have substantial effects on important behaviors and that can be implemented reliably in the real-world contexts in which they occur. This is sometimes referred to as social validity ( Wolf, 1978 ) . The study by Hall and his colleagues, for example, had good social validity because it showed strong and consistent effects of positive teacher attention on a behavior that is of obvious importance to teachers, parents, and students. Furthermore, the teachers found the treatment easy to implement, even in their often chaotic elementary school classrooms.

Who Uses Single-Subject Research?

Single-subject research has been around as long as the field of psychology itself. In the late 1800s, one of psychology’s founders, Wilhelm Wundt, studied sensation and consciousness by focusing intensively on each of a small number of research participants. Herman Ebbinghaus’s research on memory and Ivan Pavlov’s research on classical conditioning are other early examples, both of which are still described in almost every introductory psychology textbook.

In the middle of the 20th century, B. F. Skinner clarified many of the assumptions underlying single-subject research and refined many of its techniques ( Skinner, 1938 ) . He and other researchers then used it to describe how rewards, punishments, and other external factors affect behavior over time. This work was carried out primarily using nonhuman subjects—mostly rats and pigeons. This approach, which Skinner called the experimental analysis of behavior —remains an important subfield of psychology and continues to rely almost exclusively on single-subject research. For examples of this work, look at any issue of the Journal of the Experimental Analysis of Behavior . By the 1960s, many researchers were interested in using this approach to conduct applied research primarily with humans—a subfield now called applied behavior analysis ( Baer et al., 1968 ) . Applied behavior analysis plays a significant role in contemporary research on developmental disabilities, education, organizational behavior, and health, among many other areas. Examples of this work (including the study by Hall and his colleagues) can be found in the Journal of Applied Behavior Analysis . The single-subject approach can also be used by clinicians who take any theoretical perspective—behavioral, cognitive, psychodynamic, or humanistic—to study processes of therapeutic change with individual clients and to document their clients’ improvement ( Kazdin, 2019 ) .

Single-Subject Research Designs

General features of single-subject designs.

Before looking at any specific single-subject research designs, it will be helpful to consider some features that are common to most of them. Many of these features are illustrated in Figure 7.4 , which shows the results of a generic single-subject study. First, the dependent variable (represented on the y-axis of the graph) is measured repeatedly over time (represented by the x-axis) at regular intervals. Second, the study is divided into distinct phases, and the participant is tested under one condition per phase. The conditions are often designated by capital letters: A, B, C, and so on. Thus Figure 7.4 represents a design in which the participant was tested first in one condition (A), then tested in another condition (B), and finally retested in the original condition (A). (This is called a reversal design and will be discussed in more detail shortly.)

Results of a generic single-subject study illustrating several principles of single-subject research.

Figure 7.4: Results of a generic single-subject study illustrating several principles of single-subject research.

Another important aspect of single-subject research is that the change from one condition to the next does not usually occur after a fixed amount of time or number of observations. Instead, it depends on the participant’s behavior. Specifically, the researcher waits until the participant’s behavior in one condition becomes fairly consistent from observation to observation before changing conditions. This is sometimes referred to as the steady state strategy ( Sidman, 1960 ) . The idea is that when the dependent variable has reached a steady state, then any change across conditions will be relatively easy to detect. Recall that we encountered this same principle when discussing experimental research more generally. The effect of an independent variable is easier to detect when the “noise” in the data is minimized.

Reversal Designs

The most basic single-subject research design is the reversal design , also called the ABA design . During the first phase, A, a baseline is established for the dependent variable. This is the level of responding before any treatment is introduced, and therefore the baseline phase is a kind of control condition. When steady state responding is reached, phase B begins as the researcher introduces the treatment. Again, the researcher waits until that dependent variable reaches a steady state so that it is clear whether and how much it has changed. Finally, the researcher removes the treatment and again waits until the dependent variable reaches a steady state. This basic reversal design can also be extended with the reintroduction of the treatment (ABAB), another return to baseline (ABABA), and so on. The study by Hall and his colleagues was an ABAB reversal design (Figure 7.5 ).

An approximation of the results for Hall and colleagues’ participant Robbie in their ABAB reversal design. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Figure 7.5: An approximation of the results for Hall and colleagues’ participant Robbie in their ABAB reversal design. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Why is the reversal—the removal of the treatment—considered to be necessary in this type of design? If the dependent variable changes after the treatment is introduced, it is not always clear that the treatment was responsible for the change. It is possible that something else changed at around the same time and that this extraneous variable is responsible for the change in the dependent variable. But if the dependent variable changes with the introduction of the treatment and then changes back with the removal of the treatment, it is much clearer that the treatment (and removal of the treatment) is the cause. In other words, the reversal greatly increases the internal validity of the study.

Multiple-Baseline Designs

There are two potential problems with the reversal design—both of which have to do with the removal of the treatment. One is that if a treatment is working, it may be unethical to remove it. For example, if a treatment seemed to reduce the incidence of self-injury in a developmentally disabled child, it would be unethical to remove that treatment just to show that the incidence of self-injury increases. The second problem is that the dependent variable may not return to baseline when the treatment is removed. For example, when positive attention for studying is removed, a student might continue to study at an increased rate. This could mean that the positive attention had a lasting effect on the student’s studying, which of course would be good, but it could also mean that the positive attention was not really the cause of the increased studying in the first place.

One solution to these problems is to use a multiple-baseline design , which is represented in Figure 7.6 . In one version of the design, a baseline is established for each of several participants, and the treatment is then introduced for each one. In essence, each participant is tested in an AB design. The key to this design is that the treatment is introduced at a different time for each participant. The idea is that if the dependent variable changes when the treatment is introduced for one participant, it might be a coincidence. But if the dependent variable changes when the treatment is introduced for multiple participants—especially when the treatment is introduced at different times for the different participants—then it is less likely to be a coincidence.

Results of a generic multiple-baseline study. The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

Figure 7.6: Results of a generic multiple-baseline study. The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

As an example, consider a study by Scott Ross and Robert Horner ( Ross et al., 2009 ) . They were interested in how a school-wide bullying prevention program affected the bullying behavior of particular problem students. At each of three different schools, the researchers studied two students who had regularly engaged in bullying. During the baseline phase, they observed the students for 10-minute periods each day during lunch recess and counted the number of aggressive behaviors they exhibited toward their peers. (The researchers used handheld computers to help record the data.) After 2 weeks, they implemented the program at one school. After 2 more weeks, they implemented it at the second school. And after 2 more weeks, they implemented it at the third school. They found that the number of aggressive behaviors exhibited by each student dropped shortly after the program was implemented at his or her school. Notice that if the researchers had only studied one school or if they had introduced the treatment at the same time at all three schools, then it would be unclear whether the reduction in aggressive behaviors was due to the bullying program or something else that happened at about the same time it was introduced (e.g., a holiday, a television program, a change in the weather). But with their multiple-baseline design, this kind of coincidence would have to happen three separate times—an unlikely occurrence—to explain their results.

Data Analysis in Single-Subject Research

In addition to its focus on individual participants, single-subject research differs from group research in the way the data are typically analyzed. As we have seen throughout the book, group research involves combining data across participants. Inferential statistics are used to help decide whether the result for the sample is likely to generalize to the population. Single-subject research, by contrast, relies heavily on a very different approach called visual inspection . This means plotting individual participants’ data as shown throughout this chapter, looking carefully at those data, and making judgments about whether and to what extent the independent variable had an effect on the dependent variable. Inferential statistics are typically not used.

In visually inspecting their data, single-subject researchers take several factors into account. One of them is changes in the level of the dependent variable from condition to condition. If the dependent variable is much higher or much lower in one condition than another, this suggests that the treatment had an effect. A second factor is trend , which refers to gradual increases or decreases in the dependent variable across observations. If the dependent variable begins increasing or decreasing with a change in conditions, then again this suggests that the treatment had an effect. It can be especially telling when a trend changes directions—for example, when an unwanted behavior is increasing during baseline but then begins to decrease with the introduction of the treatment. A third factor is latency , which is the time it takes for the dependent variable to begin changing after a change in conditions. In general, if a change in the dependent variable begins shortly after a change in conditions, this suggests that the treatment was responsible.

In the top panel of Figure 7.7 , there are fairly obvious changes in the level and trend of the dependent variable from condition to condition. Furthermore, the latencies of these changes are short; the change happens immediately. This pattern of results strongly suggests that the treatment was responsible for the changes in the dependent variable. In the bottom panel of Figure 7.7 , however, the changes in level are fairly small. And although there appears to be an increasing trend in the treatment condition, it looks as though it might be a continuation of a trend that had already begun during baseline. This pattern of results strongly suggests that the treatment was not responsible for any changes in the dependent variable—at least not to the extent that single-subject researchers typically hope to see.

Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

Figure 7.7: Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

The results of single-subject research can also be analyzed using statistical procedures—and this is becoming more common. There are many different approaches, and single-subject researchers continue to debate which are the most useful. One approach parallels what is typically done in group research. The mean and standard deviation of each participant’s responses under each condition are computed and compared, and inferential statistical tests such as the t test or analysis of variance are applied ( Fisch, 2001 ) . (Note that averaging across participants is less common.) Another approach is to compute the percentage of nonoverlapping data (PND) for each participant ( Scruggs & Mastropieri, 2021 ) . This is the percentage of responses in the treatment condition that are more extreme than the most extreme response in a relevant control condition. In the study of Hall and his colleagues, for example, all measures of Robbie’s study time in the first treatment condition were greater than the highest measure in the first baseline, for a PND of 100%. The greater the percentage of nonoverlapping data, the stronger the treatment effect. Still, formal statistical approaches to data analysis in single-subject research are generally considered a supplement to visual inspection, not a replacement for it.

The Single-Subject Versus Group “Debate”

Single-subject research is similar to group research—especially experimental group research—in many ways. They are both quantitative approaches that try to establish causal relationships by manipulating an independent variable, measuring a dependent variable, and controlling extraneous variables. As we will see, single-subject research and group research are probably best conceptualized as complementary approaches.

Data Analysis

One set of disagreements revolves around the issue of data analysis. Some advocates of group research worry that visual inspection is inadequate for deciding whether and to what extent a treatment has affected a dependent variable. One specific concern is that visual inspection is not sensitive enough to detect weak effects. A second is that visual inspection can be unreliable, with different researchers reaching different conclusions about the same set of data ( Danov & Symons, 2008 ) . A third is that the results of visual inspection—an overall judgment of whether or not a treatment was effective—cannot be clearly and efficiently summarized or compared across studies (unlike the measures of relationship strength typically used in group research).

In general, single-subject researchers share these concerns. However, they also argue that their use of the steady state strategy, combined with their focus on strong and consistent effects, minimizes most of them. If the effect of a treatment is difficult to detect by visual inspection because the effect is weak or the data are noisy, then single-subject researchers look for ways to increase the strength of the effect or reduce the noise in the data by controlling extraneous variables (e.g., by administering the treatment more consistently). If the effect is still difficult to detect, then they are likely to consider it neither strong enough nor consistent enough to be of further interest. Many single-subject researchers also point out that statistical analysis is becoming increasingly common and that many of them are using it as a supplement to visual inspection—especially for the purpose of comparing results across studies ( Scruggs & Mastropieri, 2021 ) .

Turning the tables, some advocates of single-subject research worry about the way that group researchers analyze their data. Specifically, they point out that focusing on group means can be highly misleading. Again, imagine that a treatment has a strong positive effect on half the people exposed to it and an equally strong negative effect on the other half. In a traditional between-subjects experiment, the positive effect on half the participants in the treatment condition would be statistically cancelled out by the negative effect on the other half. The mean for the treatment group would then be the same as the mean for the control group, making it seem as though the treatment had no effect when in fact it had a strong effect on every single participant!

But again, group researchers share this concern. Although they do focus on group statistics, they also emphasize the importance of examining distributions of individual scores. For example, if some participants were positively affected by a treatment and others negatively affected by it, this would produce a bimodal distribution of scores and could be detected by looking at a histogram of the data. The use of within-subjects designs is another strategy that allows group researchers to observe effects at the individual level and even to specify what percentage of individuals exhibit strong, medium, weak, and even negative effects.

External Validity

The second issue about which single-subject and group researchers sometimes disagree has to do with external validity—the ability to generalize the results of a study beyond the people and situation actually studied. In particular, advocates of group research point out the difficulty in knowing whether results for just a few participants are likely to generalize to others in the population. Imagine, for example, that in a single-subject study, a treatment has been shown to reduce self-injury for each of two developmentally disabled children. Even if the effect is strong for these two children, how can one know whether this treatment is likely to work for other developmentally disabled children?

Again, single-subject researchers share this concern. In response, they note that the strong and consistent effects they are typically interested in—even when observed in small samples—are likely to generalize to others in the population. Single-subject researchers also note that they place a strong emphasis on replicating their research results. When they observe an effect with a small sample of participants, they typically try to replicate it with another small sample—perhaps with a slightly different type of participant or under slightly different conditions. Each time they observe similar results, they rightfully become more confident in the generality of those results. Single-subject researchers can also point to the fact that the principles of classical and operant conditioning—most of which were discovered using the single-subject approach—have been successfully generalized across an incredibly wide range of species and situations.

And again turning the tables, single-subject researchers have concerns of their own about the external validity of group research. One extremely important point they make is that studying large groups of participants does not entirely solve the problem of generalizing to other individuals. Imagine, for example, a treatment that has been shown to have a small positive effect on average in a large group study. It is likely that although many participants exhibited a small positive effect, others exhibited a large positive effect, and still others exhibited a small negative effect. When it comes to applying this treatment to another large group , we can be fairly sure that it will have a small effect on average. But when it comes to applying this treatment to another individual , we cannot be sure whether it will have a small, a large, or even a negative effect. Another point that single-subject researchers make is that group researchers also face a similar problem when they study a single situation and then generalize their results to other situations. For example, researchers who conduct a study on the effect of cell phone use on drivers on a closed oval track probably want to apply their results to drivers in many other real-world driving situations. But notice that this requires generalizing from a single situation to a population of situations. Thus the ability to generalize is based on much more than just the sheer number of participants one has studied. It requires a careful consideration of the similarity of the participants and situations studied to the population of participants and situations that one wants to generalize to ( Shadish et al., 2002 ) .

Single-Subject and Group Research as Complementary Methods

As with quantitative and qualitative research, it is probably best to conceptualize single-subject research and group research as complementary methods that have different strengths and weaknesses and that are appropriate for answering different kinds of research questions ( Kazdin, 2019 ) . Single-subject research is particularly good for testing the effectiveness of treatments on individuals when the focus is on strong, consistent, and biologically or socially important effects. It is especially useful when the behavior of particular individuals is of interest. Clinicians who work with only one individual at a time may find that it is their only option for doing systematic quantitative research.

Group research, on the other hand, is good for testing the effectiveness of treatments at the group level. Among the advantages of this approach is that it allows researchers to detect weak effects, which can be of interest for many reasons. For example, finding a weak treatment effect might lead to refinements of the treatment that eventually produce a larger and more meaningful effect. Group research is also good for studying interactions between treatments and participant characteristics. For example, if a treatment is effective for those who are high in motivation to change and ineffective for those who are low in motivation to change, then a group design can detect this much more efficiently than a single-subject design. Group research is also necessary to answer questions that cannot be addressed using the single-subject approach, including questions about independent variables that cannot be manipulated (e.g., number of siblings, extroversion, culture).

  • Single-subject research—which involves testing a small number of participants and focusing intensively on the behavior of each individual—is an important alternative to group research in psychology.
  • Single-subject studies must be distinguished from case studies, in which an individual case is described in detail. Case studies can be useful for generating new research questions, for studying rare phenomena, and for illustrating general principles. However, they cannot substitute for carefully controlled experimental or correlational studies because they are low in internal and external validity.
  • Single-subject research designs typically involve measuring the dependent variable repeatedly over time and changing conditions (e.g., from baseline to treatment) when the dependent variable has reached a steady state. This approach allows the researcher to see whether changes in the independent variable are causing changes in the dependent variable.
  • Single-subject researchers typically analyze their data by graphing them and making judgments about whether the independent variable is affecting the dependent variable based on level, trend, and latency.
  • Differences between single-subject research and group research sometimes lead to disagreements between single-subject and group researchers. These disagreements center on the issues of data analysis and external validity (especially generalization to other people). Single-subject research and group research are probably best seen as complementary methods, with different strengths and weaknesses, that are appropriate for answering different kinds of research questions.
  • Does positive attention from a parent increase a child’s toothbrushing behavior?
  • Does self-testing while studying improve a student’s performance on weekly spelling tests?
  • Does regular exercise help relieve depression?
  • Practice: Create a graph that displays the hypothetical results for the study you designed in Exercise 1. Write a paragraph in which you describe what the results show. Be sure to comment on level, trend, and latency.
  • Discussion: Imagine you have conducted a single-subject study showing a positive effect of a treatment on the behavior of a man with social anxiety disorder. Your research has been criticized on the grounds that it cannot be generalized to others. How could you respond to this criticism?
  • Discussion: Imagine you have conducted a group study showing a positive effect of a treatment on the behavior of a group of people with social anxiety disorder, but your research has been criticized on the grounds that “average” effects cannot be generalized to individuals. How could you respond to this criticism?

7.6 Glossary

The simplest reversal design, in which there is a baseline condition (A), followed by a treatment condition (B), followed by a return to baseline (A).

applied behavior analysis

A subfield of psychology that uses single-subject research and applies the principles of behavior analysis to real-world problems in areas that include education, developmental disabilities, organizational behavior, and health behavior.

A condition in a single-subject research design in which the dependent variable is measured repeatedly in the absence of any treatment. Most designs begin with a baseline condition, and many return to the baseline condition at least once.

A detailed description of an individual case.

experimental analysis of behavior

A subfield of psychology founded by B. F. Skinner that uses single-subject research—often with nonhuman animals—to study relationships primarily between environmental conditions and objectively observable behaviors.

group research

A type of quantitative research that involves studying a large number of participants and examining their behavior in terms of means, standard deviations, and other group-level statistics.

interrupted time-series design

A research design in which a series of measurements of the dependent variable are taken both before and after a treatment.

item-order effect

The effect of responding to one survey item on responses to a later survey item.

Refers collectively to extraneous developmental changes in participants that can occur between a pretest and posttest or between the first and last measurements in a time series. It can provide an alternative explanation for an observed change in the dependent variable.

multiple-baseline design

A single-subject research design in which multiple baselines are established for different participants, different dependent variables, or different contexts and the treatment is introduced at a different time for each baseline.

naturalistic observation

An approach to data collection in which the behavior of interest is observed in the environment in which it typically occurs.

nonequivalent groups design

A between-subjects research design in which participants are not randomly assigned to conditions, usually because participants are in preexisting groups (e.g., students at different schools).

nonexperimental research

Research that lacks the manipulation of an independent variable or the random assignment of participants to conditions or orders of conditions.

open-ended item

A questionnaire item that asks a question and allows respondents to respond in whatever way they want.

percentage of nonoverlapping data

A statistic sometimes used in single-subject research. The percentage of observations in a treatment condition that are more extreme than the most extreme observation in a relevant baseline condition.

pretest-posttest design

A research design in which the dependent variable is measured (the pretest), a treatment is given, and the dependent variable is measured again (the posttest) to see if there is a change in the dependent variable from pretest to posttest.

quasi-experimental research

Research that involves the manipulation of an independent variable but lacks the random assignment of participants to conditions or orders of conditions. It is generally used in field settings to test the effectiveness of a treatment.

rating scale

An ordered set of response options to a closed-ended questionnaire item.

The statistical fact that an individual who scores extremely on one occasion will tend to score less extremely on the next occasion.

A term often used to refer to a participant in survey research.

reversal design

A single-subject research design that begins with a baseline condition with no treatment, followed by the introduction of a treatment, and after that a return to the baseline condition. It can include additional treatment conditions and returns to baseline.

single-subject research

A type of quantitative research that involves examining in detail the behavior of each of a small number of participants.

single-variable research

Research that focuses on a single variable rather than on a statistical relationship between variables.

social validity

The extent to which a single-subject study focuses on an intervention that has a substantial effect on an important behavior and can be implemented reliably in the real-world contexts (e.g., by teachers in a classroom) in which that behavior occurs.

Improvement in a psychological or medical problem over time without any treatment.

steady state strategy

In single-subject research, allowing behavior to become fairly consistent from one observation to the next before changing conditions. This makes any effect of the treatment easier to detect.

survey research

A quantitative research approach that uses self-report measures and large, carefully selected samples.

testing effect

A bias in participants’ responses in which scores on the posttest are influenced by simple exposure to the pretest

visual inspection

The primary approach to data analysis in single-subject research, which involves graphing the data and making a judgment as to whether and to what extent the independent variable affected the dependent variable.

Quasi-Experimental Design: Definition, Types, Examples

Appinio Research · 19.12.2023 · 37min read

Quasi-Experimental Design Definition Types Examples

Ever wondered how researchers uncover cause-and-effect relationships in the real world, where controlled experiments are often elusive? Quasi-experimental design holds the key. In this guide, we'll unravel the intricacies of quasi-experimental design, shedding light on its definition, purpose, and applications across various domains. Whether you're a student, a professional, or simply curious about the methods behind meaningful research, join us as we delve into the world of quasi-experimental design, making complex concepts sound simple and embarking on a journey of knowledge and discovery.

What is Quasi-Experimental Design?

Quasi-experimental design is a research methodology used to study the effects of independent variables on dependent variables when full experimental control is not possible or ethical. It falls between controlled experiments, where variables are tightly controlled, and purely observational studies, where researchers have little control over variables. Quasi-experimental design mimics some aspects of experimental research but lacks randomization.

The primary purpose of quasi-experimental design is to investigate cause-and-effect relationships between variables in real-world settings. Researchers use this approach to answer research questions, test hypotheses, and explore the impact of interventions or treatments when they cannot employ traditional experimental methods. Quasi-experimental studies aim to maximize internal validity and make meaningful inferences while acknowledging practical constraints and ethical considerations.

Quasi-Experimental vs. Experimental Design

It's essential to understand the distinctions between Quasi-Experimental and Experimental Design to appreciate the unique characteristics of each approach:

  • Randomization:  In Experimental Design, random assignment of participants to groups is a defining feature. Quasi-experimental design, on the other hand, lacks randomization due to practical constraints or ethical considerations.
  • Control Groups :  Experimental Design typically includes control groups that are subjected to no treatment or a placebo. The quasi-experimental design may have comparison groups but lacks the same level of control.
  • Manipulation of IV:  Experimental Design involves the intentional manipulation of the independent variable. Quasi-experimental design often deals with naturally occurring independent variables.
  • Causal Inference:  Experimental Design allows for stronger causal inferences due to randomization and control. Quasi-experimental design permits causal inferences but with some limitations.

When to Use Quasi-Experimental Design?

A quasi-experimental design is particularly valuable in several situations:

  • Ethical Constraints:  When manipulating the independent variable is ethically unacceptable or impractical, quasi-experimental design offers an alternative to studying naturally occurring variables.
  • Real-World Settings:  When researchers want to study phenomena in real-world contexts, quasi-experimental design allows them to do so without artificial laboratory settings.
  • Limited Resources:  In cases where resources are limited and conducting a controlled experiment is cost-prohibitive, quasi-experimental design can provide valuable insights.
  • Policy and Program Evaluation:  Quasi-experimental design is commonly used in evaluating the effectiveness of policies, interventions, or programs that cannot be randomly assigned to participants.

Importance of Quasi-Experimental Design in Research

Quasi-experimental design plays a vital role in research for several reasons:

  • Addressing Real-World Complexities:  It allows researchers to tackle complex real-world issues where controlled experiments are not feasible. This bridges the gap between controlled experiments and purely observational studies.
  • Ethical Research:  It provides an honest approach when manipulating variables or assigning treatments could harm participants or violate ethical standards.
  • Policy and Practice Implications:  Quasi-experimental studies generate findings with direct applications in policy-making and practical solutions in fields such as education, healthcare, and social sciences.
  • Enhanced External Validity:  Findings from Quasi-Experimental research often have high external validity, making them more applicable to broader populations and contexts.

By embracing the challenges and opportunities of quasi-experimental design, researchers can contribute valuable insights to their respective fields and drive positive changes in the real world.

Key Concepts in Quasi-Experimental Design

In quasi-experimental design, it's essential to grasp the fundamental concepts underpinning this research methodology. Let's explore these key concepts in detail.

Independent Variable

The independent variable (IV) is the factor you aim to study or manipulate in your research. Unlike controlled experiments, where you can directly manipulate the IV, quasi-experimental design often deals with naturally occurring variables. For example, if you're investigating the impact of a new teaching method on student performance, the teaching method is your independent variable.

Dependent Variable

The dependent variable (DV) is the outcome or response you measure to assess the effects of changes in the independent variable. Continuing with the teaching method example, the dependent variable would be the students' academic performance, typically measured using test scores, grades, or other relevant metrics.

Control Groups vs. Comparison Groups

While quasi-experimental design lacks the luxury of randomly assigning participants to control and experimental groups, you can still establish comparison groups to make meaningful inferences. Control groups consist of individuals who do not receive the treatment, while comparison groups are exposed to different levels or variations of the treatment. These groups help researchers gauge the effect of the independent variable.

Pre-Test and Post-Test Measures

In quasi-experimental design, it's common practice to collect data both before and after implementing the independent variable. The initial data (pre-test) serves as a baseline, allowing you to measure changes over time (post-test). This approach helps assess the impact of the independent variable more accurately. For instance, if you're studying the effectiveness of a new drug, you'd measure patients' health before administering the drug (pre-test) and afterward (post-test).

Threats to Internal Validity

Internal validity is crucial for establishing a cause-and-effect relationship between the independent and dependent variables. However, in a quasi-experimental design, several threats can compromise internal validity. These threats include:

  • Selection Bias :  When non-randomized groups differ systematically in ways that affect the study's outcome.
  • History Effects:  External events or changes over time that influence the results.
  • Maturation Effects:  Natural changes or developments that occur within participants during the study.
  • Regression to the Mean:  The tendency for extreme scores on a variable to move closer to the mean upon retesting.
  • Attrition and Mortality:  The loss of participants over time, potentially skewing the results.
  • Testing Effects:  The mere act of testing or assessing participants can impact their subsequent performance.

Understanding these threats is essential for designing and conducting Quasi-Experimental studies that yield valid and reliable results.

Randomization and Non-Randomization

In traditional experimental designs, randomization is a powerful tool for ensuring that groups are equivalent at the outset of a study. However, quasi-experimental design often involves non-randomization due to the nature of the research. This means that participants are not randomly assigned to treatment and control groups. Instead, researchers must employ various techniques to minimize biases and ensure that the groups are as similar as possible.

For example, if you are conducting a study on the effects of a new teaching method in a real classroom setting, you cannot randomly assign students to the treatment and control groups. Instead, you might use statistical methods to match students based on relevant characteristics such as prior academic performance or socioeconomic status. This matching process helps control for potential confounding variables, increasing the validity of your study.

Types of Quasi-Experimental Designs

In quasi-experimental design, researchers employ various approaches to investigate causal relationships and study the effects of independent variables when complete experimental control is challenging. Let's explore these types of quasi-experimental designs.

One-Group Posttest-Only Design

The One-Group Posttest-Only Design is one of the simplest forms of quasi-experimental design. In this design, a single group is exposed to the independent variable, and data is collected only after the intervention has taken place. Unlike controlled experiments, there is no comparison group. This design is useful when researchers cannot administer a pre-test or when it is logistically difficult to do so.

Example : Suppose you want to assess the effectiveness of a new time management seminar. You offer the seminar to a group of employees and measure their productivity levels immediately afterward to determine if there's an observable impact.

One-Group Pretest-Posttest Design

Similar to the One-Group Posttest-Only Design, this approach includes a pre-test measure in addition to the post-test. Researchers collect data both before and after the intervention. By comparing the pre-test and post-test results within the same group, you can gain a better understanding of the changes that occur due to the independent variable.

Example : If you're studying the impact of a stress management program on participants' stress levels, you would measure their stress levels before the program (pre-test) and after completing the program (post-test) to assess any changes.

Non-Equivalent Groups Design

The Non-Equivalent Groups Design involves multiple groups, but they are not randomly assigned. Instead, researchers must carefully match or control for relevant variables to minimize biases. This design is particularly useful when random assignment is not possible or ethical.

Example : Imagine you're examining the effectiveness of two teaching methods in two different schools. You can't randomly assign students to the schools, but you can carefully match them based on factors like age, prior academic performance, and socioeconomic status to create equivalent groups.

Time Series Design

Time Series Design is an approach where data is collected at multiple time points before and after the intervention. This design allows researchers to analyze trends and patterns over time, providing valuable insights into the sustained effects of the independent variable.

Example : If you're studying the impact of a new marketing campaign on product sales, you would collect sales data at regular intervals (e.g., monthly) before and after the campaign's launch to observe any long-term trends.

Regression Discontinuity Design

Regression Discontinuity Design is employed when participants are assigned to different groups based on a specific cutoff score or threshold. This design is often used in educational and policy research to assess the effects of interventions near a cutoff point.

Example : Suppose you're evaluating the impact of a scholarship program on students' academic performance. Students who score just above or below a certain GPA threshold are assigned differently to the program. This design helps assess the program's effectiveness at the cutoff point.

Propensity Score Matching

Propensity Score Matching is a technique used to create comparable treatment and control groups in non-randomized studies. Researchers calculate propensity scores based on participants' characteristics and match individuals in the treatment group to those in the control group with similar scores.

Example : If you're studying the effects of a new medication on patient outcomes, you would use propensity scores to match patients who received the medication with those who did not but have similar health profiles.

Interrupted Time Series Design

The Interrupted Time Series Design involves collecting data at multiple time points before and after the introduction of an intervention. However, in this design, the intervention occurs at a specific point in time, allowing researchers to assess its immediate impact.

Example : Let's say you're analyzing the effects of a new traffic management system on traffic accidents. You collect accident data before and after the system's implementation to observe any abrupt changes right after its introduction.

Each of these quasi-experimental designs offers unique advantages and is best suited to specific research questions and scenarios. Choosing the right design is crucial for conducting robust and informative studies.

Advantages and Disadvantages of Quasi-Experimental Design

Quasi-experimental design offers a valuable research approach, but like any methodology, it comes with its own set of advantages and disadvantages. Let's explore these in detail.

Quasi-Experimental Design Advantages

Quasi-experimental design presents several advantages that make it a valuable tool in research:

  • Real-World Applicability:  Quasi-experimental studies often take place in real-world settings, making the findings more applicable to practical situations. Researchers can examine the effects of interventions or variables in the context where they naturally occur.
  • Ethical Considerations:  In situations where manipulating the independent variable in a controlled experiment would be unethical, quasi-experimental design provides an ethical alternative. For example, it would be unethical to assign participants to smoke for a study on the health effects of smoking, but you can study naturally occurring groups of smokers and non-smokers.
  • Cost-Efficiency:  Conducting Quasi-Experimental research is often more cost-effective than conducting controlled experiments. The absence of controlled environments and extensive manipulations can save both time and resources.

These advantages make quasi-experimental design an attractive choice for researchers facing practical or ethical constraints in their studies.

Quasi-Experimental Design Disadvantages

However, quasi-experimental design also comes with its share of challenges and disadvantages:

  • Limited Control:  Unlike controlled experiments, where researchers have full control over variables, quasi-experimental design lacks the same level of control. This limited control can result in confounding variables that make it difficult to establish causality.
  • Threats to Internal Validity:  Various threats to internal validity, such as selection bias, history effects, and maturation effects, can compromise the accuracy of causal inferences. Researchers must carefully address these threats to ensure the validity of their findings.
  • Causality Inference Challenges:  Establishing causality can be challenging in quasi-experimental design due to the absence of randomization and control. While you can make strong arguments for causality, it may not be as conclusive as in controlled experiments.
  • Potential Confounding Variables:  In a quasi-experimental design, it's often challenging to control for all possible confounding variables that may affect the dependent variable. This can lead to uncertainty in attributing changes solely to the independent variable.

Despite these disadvantages, quasi-experimental design remains a valuable research tool when used judiciously and with a keen awareness of its limitations. Researchers should carefully consider their research questions and the practical constraints they face before choosing this approach.

How to Conduct a Quasi-Experimental Study?

Conducting a Quasi-Experimental study requires careful planning and execution to ensure the validity of your research. Let's dive into the essential steps you need to follow when conducting such a study.

1. Define Research Questions and Objectives

The first step in any research endeavor is clearly defining your research questions and objectives. This involves identifying the independent variable (IV) and the dependent variable (DV) you want to study. What is the specific relationship you want to explore, and what do you aim to achieve with your research?

  • Specify Your Research Questions :  Start by formulating precise research questions that your study aims to answer. These questions should be clear, focused, and relevant to your field of study.
  • Identify the Independent Variable:  Define the variable you intend to manipulate or study in your research. Understand its significance in your study's context.
  • Determine the Dependent Variable:  Identify the outcome or response variable that will be affected by changes in the independent variable.
  • Establish Hypotheses (If Applicable):  If you have specific hypotheses about the relationship between the IV and DV, state them clearly. Hypotheses provide a framework for testing your research questions.

2. Select the Appropriate Quasi-Experimental Design

Choosing the right quasi-experimental design is crucial for achieving your research objectives. Select a design that aligns with your research questions and the available data. Consider factors such as the feasibility of implementing the design and the ethical considerations involved.

  • Evaluate Your Research Goals:  Assess your research questions and objectives to determine which type of quasi-experimental design is most suitable. Each design has its strengths and limitations, so choose one that aligns with your goals.
  • Consider Ethical Constraints:  Take into account any ethical concerns related to your research. Depending on your study's context, some designs may be more ethically sound than others.
  • Assess Data Availability:  Ensure you have access to the necessary data for your chosen design. Some designs may require extensive historical data, while others may rely on data collected during the study.

3. Identify and Recruit Participants

Selecting the right participants is a critical aspect of Quasi-Experimental research. The participants should represent the population you want to make inferences about, and you must address ethical considerations, including informed consent.

  • Define Your Target Population:  Determine the population that your study aims to generalize to. Your sample should be representative of this population.
  • Recruitment Process:  Develop a plan for recruiting participants. Depending on your design, you may need to reach out to specific groups or institutions.
  • Informed Consent:  Ensure that you obtain informed consent from participants. Clearly explain the nature of the study, potential risks, and their rights as participants.

4. Collect Data

Data collection is a crucial step in Quasi-Experimental research. You must adhere to a consistent and systematic process to gather relevant information before and after the intervention or treatment.

  • Pre-Test Measures:  If applicable, collect data before introducing the independent variable. Ensure that the pre-test measures are standardized and reliable.
  • Post-Test Measures:  After the intervention, collect post-test data using the same measures as the pre-test. This allows you to assess changes over time.
  • Maintain Data Consistency:  Ensure that data collection procedures are consistent across all participants and time points to minimize biases.

5. Analyze Data

Once you've collected your data, it's time to analyze it using appropriate statistical techniques . The choice of analysis depends on your research questions and the type of data you've gathered.

  • Statistical Analysis :  Use statistical software to analyze your data. Common techniques include t-tests , analysis of variance (ANOVA) , regression analysis , and more, depending on the design and variables.
  • Control for Confounding Variables:  Be aware of potential confounding variables and include them in your analysis as covariates to ensure accurate results.

Chi-Square Calculator :

t-Test Calculator :

6. Interpret Results

With the analysis complete, you can interpret the results to draw meaningful conclusions about the relationship between the independent and dependent variables.

  • Examine Effect Sizes:  Assess the magnitude of the observed effects to determine their practical significance.
  • Consider Significance Levels:  Determine whether the observed results are statistically significant . Understand the p-values and their implications.
  • Compare Findings to Hypotheses:  Evaluate whether your findings support or reject your hypotheses and research questions.

7. Draw Conclusions

Based on your analysis and interpretation of the results, draw conclusions about the research questions and objectives you set out to address.

  • Causal Inferences:  Discuss the extent to which your study allows for causal inferences. Be transparent about the limitations and potential alternative explanations for your findings.
  • Implications and Applications:  Consider the practical implications of your research. How do your findings contribute to existing knowledge, and how can they be applied in real-world contexts?
  • Future Research:  Identify areas for future research and potential improvements in study design. Highlight any limitations or constraints that may have affected your study's outcomes.

By following these steps meticulously, you can conduct a rigorous and informative Quasi-Experimental study that advances knowledge in your field of research.

Quasi-Experimental Design Examples

Quasi-experimental design finds applications in a wide range of research domains, including business-related and market research scenarios. Below, we delve into some detailed examples of how this research methodology is employed in practice:

Example 1: Assessing the Impact of a New Marketing Strategy

Suppose a company wants to evaluate the effectiveness of a new marketing strategy aimed at boosting sales. Conducting a controlled experiment may not be feasible due to the company's existing customer base and the challenge of randomly assigning customers to different marketing approaches. In this scenario, a quasi-experimental design can be employed.

  • Independent Variable:  The new marketing strategy.
  • Dependent Variable:  Sales revenue.
  • Design:  The company could implement the new strategy for one group of customers while maintaining the existing strategy for another group. Both groups are selected based on similar demographics and purchase history , reducing selection bias. Pre-implementation data (sales records) can serve as the baseline, and post-implementation data can be collected to assess the strategy's impact.

Example 2: Evaluating the Effectiveness of Employee Training Programs

In the context of human resources and employee development, organizations often seek to evaluate the impact of training programs. A randomized controlled trial (RCT) with random assignment may not be practical or ethical, as some employees may need specific training more than others. Instead, a quasi-experimental design can be employed.

  • Independent Variable:  Employee training programs.
  • Dependent Variable:  Employee performance metrics, such as productivity or quality of work.
  • Design:  The organization can offer training programs to employees who express interest or demonstrate specific needs, creating a self-selected treatment group. A comparable control group can consist of employees with similar job roles and qualifications who did not receive the training. Pre-training performance metrics can serve as the baseline, and post-training data can be collected to assess the impact of the training programs.

Example 3: Analyzing the Effects of a Tax Policy Change

In economics and public policy, researchers often examine the effects of tax policy changes on economic behavior. Conducting a controlled experiment in such cases is practically impossible. Therefore, a quasi-experimental design is commonly employed.

  • Independent Variable:  Tax policy changes (e.g., tax rate adjustments).
  • Dependent Variable:  Economic indicators, such as consumer spending or business investments.
  • Design:  Researchers can analyze data from different regions or jurisdictions where tax policy changes have been implemented. One region could represent the treatment group (with tax policy changes), while a similar region with no tax policy changes serves as the control group. By comparing economic data before and after the policy change in both groups, researchers can assess the impact of the tax policy changes.

These examples illustrate how quasi-experimental design can be applied in various research contexts, providing valuable insights into the effects of independent variables in real-world scenarios where controlled experiments are not feasible or ethical. By carefully selecting comparison groups and controlling for potential biases, researchers can draw meaningful conclusions and inform decision-making processes.

How to Publish Quasi-Experimental Research?

Publishing your Quasi-Experimental research findings is a crucial step in contributing to the academic community's knowledge. We'll explore the essential aspects of reporting and publishing your Quasi-Experimental research effectively.

Structuring Your Research Paper

When preparing your research paper, it's essential to adhere to a well-structured format to ensure clarity and comprehensibility. Here are key elements to include:

Title and Abstract

  • Title:  Craft a concise and informative title that reflects the essence of your study. It should capture the main research question or hypothesis.
  • Abstract:  Summarize your research in a structured abstract, including the purpose, methods, results, and conclusions. Ensure it provides a clear overview of your study.

Introduction

  • Background and Rationale:  Provide context for your study by discussing the research gap or problem your study addresses. Explain why your research is relevant and essential.
  • Research Questions or Hypotheses:  Clearly state your research questions or hypotheses and their significance.

Literature Review

  • Review of Related Work:  Discuss relevant literature that supports your research. Highlight studies with similar methodologies or findings and explain how your research fits within this context.
  • Participants:  Describe your study's participants, including their characteristics and how you recruited them.
  • Quasi-Experimental Design:  Explain your chosen design in detail, including the independent and dependent variables, procedures, and any control measures taken.
  • Data Collection:  Detail the data collection methods , instruments used, and any pre-test or post-test measures.
  • Data Analysis:  Describe the statistical techniques employed, including any control for confounding variables.
  • Presentation of Findings:  Present your results clearly, using tables, graphs, and descriptive statistics where appropriate. Include p-values and effect sizes, if applicable.
  • Interpretation of Results:  Discuss the implications of your findings and how they relate to your research questions or hypotheses.
  • Interpretation and Implications:  Analyze your results in the context of existing literature and theories. Discuss the practical implications of your findings.
  • Limitations:  Address the limitations of your study, including potential biases or threats to internal validity.
  • Future Research:  Suggest areas for future research and how your study contributes to the field.

Ethical Considerations in Reporting

Ethical reporting is paramount in Quasi-Experimental research. Ensure that you adhere to ethical standards, including:

  • Informed Consent:  Clearly state that informed consent was obtained from all participants, and describe the informed consent process.
  • Protection of Participants:  Explain how you protected the rights and well-being of your participants throughout the study.
  • Confidentiality:  Detail how you maintained privacy and anonymity, especially when presenting individual data.
  • Disclosure of Conflicts of Interest:  Declare any potential conflicts of interest that could influence the interpretation of your findings.

Common Pitfalls to Avoid

When reporting your Quasi-Experimental research, watch out for common pitfalls that can diminish the quality and impact of your work:

  • Overgeneralization:  Be cautious not to overgeneralize your findings. Clearly state the limits of your study and the populations to which your results can be applied.
  • Misinterpretation of Causality:  Clearly articulate the limitations in inferring causality in Quasi-Experimental research. Avoid making strong causal claims unless supported by solid evidence.
  • Ignoring Ethical Concerns:  Ethical considerations are paramount. Failing to report on informed consent, ethical oversight, and participant protection can undermine the credibility of your study.

Guidelines for Transparent Reporting

To enhance the transparency and reproducibility of your Quasi-Experimental research, consider adhering to established reporting guidelines, such as:

  • CONSORT Statement:  If your study involves interventions or treatments, follow the CONSORT guidelines for transparent reporting of randomized controlled trials.
  • STROBE Statement:  For observational studies, the STROBE statement provides guidance on reporting essential elements.
  • PRISMA Statement:  If your research involves systematic reviews or meta-analyses, adhere to the PRISMA guidelines.
  • Transparent Reporting of Evaluations with Non-Randomized Designs (TREND):  TREND guidelines offer specific recommendations for transparently reporting non-randomized designs, including Quasi-Experimental research.

By following these reporting guidelines and maintaining the highest ethical standards, you can contribute to the advancement of knowledge in your field and ensure the credibility and impact of your Quasi-Experimental research findings.

Quasi-Experimental Design Challenges

Conducting a Quasi-Experimental study can be fraught with challenges that may impact the validity and reliability of your findings. We'll take a look at some common challenges and provide strategies on how you can address them effectively.

Selection Bias

Challenge:  Selection bias occurs when non-randomized groups differ systematically in ways that affect the study's outcome. This bias can undermine the validity of your research, as it implies that the groups are not equivalent at the outset of the study.

Addressing Selection Bias:

  • Matching:  Employ matching techniques to create comparable treatment and control groups. Match participants based on relevant characteristics, such as age, gender, or prior performance, to balance the groups.
  • Statistical Controls:  Use statistical controls to account for differences between groups. Include covariates in your analysis to adjust for potential biases.
  • Sensitivity Analysis:  Conduct sensitivity analyses to assess how vulnerable your results are to selection bias. Explore different scenarios to understand the impact of potential bias on your conclusions.

History Effects

Challenge:  History effects refer to external events or changes over time that influence the study's results. These external factors can confound your research by introducing variables you did not account for.

Addressing History Effects:

  • Collect Historical Data:  Gather extensive historical data to understand trends and patterns that might affect your study. By having a comprehensive historical context, you can better identify and account for historical effects.
  • Control Groups:  Include control groups whenever possible. By comparing the treatment group's results to those of a control group, you can account for external influences that affect both groups equally.
  • Time Series Analysis :  If applicable, use time series analysis to detect and account for temporal trends. This method helps differentiate between the effects of the independent variable and external events.

Maturation Effects

Challenge:  Maturation effects occur when participants naturally change or develop throughout the study, independent of the intervention. These changes can confound your results, making it challenging to attribute observed effects solely to the independent variable.

Addressing Maturation Effects:

  • Randomization:  If possible, use randomization to distribute maturation effects evenly across treatment and control groups. Random assignment minimizes the impact of maturation as a confounding variable.
  • Matched Pairs:  If randomization is not feasible, employ matched pairs or statistical controls to ensure that both groups experience similar maturation effects.
  • Shorter Time Frames:  Limit the duration of your study to reduce the likelihood of significant maturation effects. Shorter studies are less susceptible to long-term maturation.

Regression to the Mean

Challenge:  Regression to the mean is the tendency for extreme scores on a variable to move closer to the mean upon retesting. This can create the illusion of an intervention's effectiveness when, in reality, it's a natural statistical phenomenon.

Addressing Regression to the Mean:

  • Use Control Groups:  Include control groups in your study to provide a baseline for comparison. This helps differentiate genuine intervention effects from regression to the mean.
  • Multiple Data Points:  Collect numerous data points to identify patterns and trends. If extreme scores regress to the mean in subsequent measurements, it may be indicative of regression to the mean rather than a true intervention effect.
  • Statistical Analysis:  Employ statistical techniques that account for regression to the mean when analyzing your data. Techniques like analysis of covariance (ANCOVA) can help control for baseline differences.

Attrition and Mortality

Challenge:  Attrition refers to the loss of participants over the course of your study, while mortality is the permanent loss of participants. High attrition rates can introduce biases and affect the representativeness of your sample.

Addressing Attrition and Mortality:

  • Careful Participant Selection:  Select participants who are likely to remain engaged throughout the study. Consider factors that may lead to attrition, such as participant motivation and commitment.
  • Incentives:  Provide incentives or compensation to participants to encourage their continued participation.
  • Follow-Up Strategies:  Implement effective follow-up strategies to reduce attrition. Regular communication and reminders can help keep participants engaged.
  • Sensitivity Analysis:  Conduct sensitivity analyses to assess the impact of attrition and mortality on your results. Compare the characteristics of participants who dropped out with those who completed the study.

Testing Effects

Challenge:  Testing effects occur when the mere act of testing or assessing participants affects their subsequent performance. This phenomenon can lead to changes in the dependent variable that are unrelated to the independent variable.

Addressing Testing Effects:

  • Counterbalance Testing:  If possible, counterbalance the order of tests or assessments between treatment and control groups. This helps distribute the testing effects evenly across groups.
  • Control Groups:  Include control groups subjected to the same testing or assessment procedures as the treatment group. By comparing the two groups, you can determine whether testing effects have influenced the results.
  • Minimize Testing Frequency:  Limit the frequency of testing or assessments to reduce the likelihood of testing effects. Conducting fewer assessments can mitigate the impact of repeated testing on participants.

By proactively addressing these common challenges, you can enhance the validity and reliability of your Quasi-Experimental study, making your findings more robust and trustworthy.

Conclusion for Quasi-Expermental Design

Quasi-experimental design is a powerful tool that helps researchers investigate cause-and-effect relationships in real-world situations where strict control is not always possible. By understanding the key concepts, types of designs, and how to address challenges, you can conduct robust research and contribute valuable insights to your field. Remember, quasi-experimental design bridges the gap between controlled experiments and purely observational studies, making it an essential approach in various fields, from business and market research to public policy and beyond. So, whether you're a researcher, student, or decision-maker, the knowledge of quasi-experimental design empowers you to make informed choices and drive positive changes in the world.

How to Supercharge Quasi-Experimental Design with Real-Time Insights?

Introducing Appinio , the real-time market research platform that transforms the world of quasi-experimental design. Imagine having the power to conduct your own market research in minutes, obtaining actionable insights that fuel your data-driven decisions. Appinio takes care of the research and tech complexities, freeing you to focus on what truly matters for your business.

Here's why Appinio stands out:

  • Lightning-Fast Insights:  From formulating questions to uncovering insights, Appinio delivers results in minutes, ensuring you get the answers you need when you need them.
  • No Research Degree Required:  Our intuitive platform is designed for everyone, eliminating the need for a PhD in research. Anyone can dive in and start harnessing the power of real-time consumer insights.
  • Global Reach, Local Expertise:  With access to over 90 countries and the ability to define precise target groups based on 1200+ characteristics, you can conduct Quasi-Experimental research on a global scale while maintaining a local touch.

Register now EN

Get free access to the platform!

Get facts and figures 🧠

Want to see more data insights? Our free reports are just the right thing for you!

Wait, there's more

Trustly uses Appinio’s insights to revolutionize utility bill payments

04.11.2024 | 5min read

Trustly uses Appinio’s insights to revolutionize utility bill payments

Track Your Customer Retention & Brand Metrics for Post-Holiday Success

19.09.2024 | 9min read

Track Your Customer Retention & Brand Metrics for Post-Holiday Success

Creative Checkup – Optimize Advertising Slogans & Creatives for maximum ROI

16.09.2024 | 10min read

Creative Checkup – Optimize Advertising Slogans & Creatives for ROI

IMAGES

  1. 5 Quasi-Experimental Design Examples (2024)

    quasi experimental research how variable is handled or manipulated

  2. What Is Quasi Experimental Research

    quasi experimental research how variable is handled or manipulated

  3. Advantages Of Quasi Experimental Research

    quasi experimental research how variable is handled or manipulated

  4. Quasi-Experimental Design

    quasi experimental research how variable is handled or manipulated

  5. Types Of Quasi Experimental Research Design

    quasi experimental research how variable is handled or manipulated

  6. 20 differences between Randomized Controlled Trial (RCT) and Quasi-experimental study design

    quasi experimental research how variable is handled or manipulated

COMMENTS

  1. 7.3 Quasi-Experimental Research – Research Methods in Psychology

    The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979).

  2. Quasi-Experimental Design | Definition, Types & Examples

    Jul 31, 2020 · In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government). Advantages and disadvantages. Quasi-experimental designs have various pros and cons compared to other types of studies.

  3. Quasi-Experimental Research – Research Methods in Psychology

    Although an independent variable is manipulated, either a control group is missing or participants are not randomly assigned to conditions (Cook & Campbell, 1979) [1]. Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem associated with non ...

  4. What is Quasi-Experimental Design? Definition, Types, and ...

    Nov 25, 2024 · Accordingly, the definition of quasi-experimental research 1,2 is that it is a type of research that resembles true experimental research but is not the exact same concept. A true experimental design has three characteristics—manipulation of the independent variable, presence of a control group, and random assignment of participants to ...

  5. Quasi-Experimental Design | Definition, Types & Examples

    Nov 26, 2024 · Like any research design, quasi-experimental designs have certain advantages and disadvantages. Advantages of quasi-experimental design: Higher external validity than true experiments : Quasi-experiments are generally conducted in real-world settings rather than controlled laboratory settings, so they may better reflect reality.

  6. 6.3 Quasi-Experiments – Research Methods for the Social ...

    In a quasi-experiment, the independent variable is manipulated and similar to an experiment, it tests causal hypothesis (Campbell & Stanley, 1963). Quasi-experiments allow researchers to infer causality by using the logic behind the experiment in a different way; however, there are three criteria that must be satisfied for causality to be inferred:

  7. Quasi-Experimental Designs - University of North Carolina ...

    Quasi-Experimental Designs “Static” variables: Experimenter does not manipulate Therefore all could be subject to unknown or unanticipated confounds Cannot clearly isolate cause and effect Defined in terms of correlations of associations In an article, preferred description is the strength of the association

  8. Quasi-Experimental Research Design – Types, Methods

    Mar 26, 2024 · Quasi-experimental research design is a widely used methodology in social sciences, education, healthcare, and other fields to evaluate the impact of an intervention or treatment. Unlike true experimental designs, quasi-experiments lack random assignment, which can limit control over external factors but still offer valuable insights into cause ...

  9. Chapter 7 Quasi-Experimental Research | A Modern Guide to ...

    The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook et al., 1979).

  10. Quasi-Experimental Design: Definition, Types, Examples - Appinio

    Dec 19, 2023 · Quasi-experimental design is a research methodology used to study the effects of independent variables on dependent variables when full experimental control is not possible or ethical. It falls between controlled experiments, where variables are tightly controlled, and purely observational studies, where researchers have little control over ...